World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Oscillating Forcings and New Regimes in the Lorenz System: a Four-lobe Attractor : Volume 19, Issue 3 (08/05/2012)

By Pelino, V.

Click here to view

Book Id: WPLBN0003983208
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Oscillating Forcings and New Regimes in the Lorenz System: a Four-lobe Attractor : Volume 19, Issue 3 (08/05/2012)  
Author: Pelino, V.
Volume: Vol. 19, Issue 3
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: copernicus


APA MLA Chicago

Pasini, A., Maimone, F., & Pelino, V. (2012). Oscillating Forcings and New Regimes in the Lorenz System: a Four-lobe Attractor : Volume 19, Issue 3 (08/05/2012). Retrieved from

Description: Italian Air Force, CNMCA, Pratica di Mare (Rome), Italy. It has been shown that forced Lorenz models generally maintain their two-lobe structure, just giving rise to changes in the occurrence of their regimes. Here, using the richness of a unified formalism for Kolmogorov-Lorenz systems, we show that introducing oscillating forcings can lead to the birth of new regimes and to a four-lobe attractor. Analogies within a climate dynamics framework are mentioned.

Oscillating forcings and new regimes in the Lorenz system: a four-lobe attractor

Ahlers, G., Hohenberg, P. C., and Lucke, M.: Externally modulated Rayleigh-Bénard convection: Experiment and theory, Phys. Rev. Lett., 53, 48–51, 1984.; Arnold, V. I.: Kolmogorov's hydrodynamic attractors, Proc. Roy. Soc. A, 434, 19–22, 1991.; Arnold, V. I. and Khesin, B. A.: Topological methods in hydrodynamics, Springer, Berlin, Germany, 1998.; Broer, H., Simó, C., and Vitolo, R.: Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity, 15, 1205–1267, 2002.; Choe, C.-U., Hohne, K., Benner, H., and Kivshar, Y.-S.: Chaos suppression in the parametrically driven Lorenz system, Phys. Rev. E, 72, 036206, doi:10.1103/PhysRevE.72.036206, 2005.; Corti, S., Molteni, F., and Palmer, T. N.: Signature of recent climate change in frequencies of natural atmospheric circulation, Nature, 398, 799–802, 1999.; Crisanti, A., Falcioni, M., Lacorata, G., Purini, R., and Vulpiani, A.: Characterization of a periodically driven chaotic dynamical system, J. Phys. A. Math. Gen., 30, 371–383, 1997.; d'Anjou, A., Sarasola, C., and Torrealdea, F. J.: On the characterization of different synchronization stages by energy considerations, J. Phys., 23, 238–251, 2005.; Franz, M. and Zhang, M.: Suppression and creation of chaos in a periodically forced Lorenz system, Phys. Rev. E, 52, 3558–3565, 1995.; Gianfelice, M., Maimone, F., Pelino, V., and Vaienti, S.: On the recurrence and robust properties of Lorenz'63 model, Comm. Math. Phys., online first, doi:10.1007/s00220-012-1438-7, 2012.; Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963.; Lucarini, V.: Evidence of dispersion relations for the nonlinear response of the Lorenz 63 system, J. Stat. Phys., 134, 381–400, 2009.; Majda, A. J. and Wang, X.: Nonlinear dynamics and statistical theories for basic geophysical flows, Cambridge University Press, Cambridge, UK, 2006.; Marsden, J. E. and Ratiu, T.: Introduction to mechanics and symmetry, Springer, Berlin, Germany, 1994.; McLachlan, R. I., Quispel, G. R. W., and Robidoux, N.: Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals, Phys. Rev. Lett., 81, 2399–2403, 1998.; Morrison, P. J.: Hamiltonian description of the ideal fluid, Rev. Mod. Phys., 70, 467–521, 1998.; Nambu, Y.: Generalized Hamiltonian dynamics, Phys. Rev. D, 7, 2405–2412, 1973.; Nevir, P. and Blender, R.: Hamiltonian and Nambu representation of the non-dissipative Lorenz equations, Beitr. Phys. Atmosph., 67, 133–140, 1994.; Park, E.-H., Zaks, M.-A., and Kurths, J.: Phase synchronization in the forced Lorenz system, Phys. Rev. E, 60, 6627–6638, 1999.; Pasini, A.: External forcings and predictability in Lorenz model: An analysis via neural network modelling, Nuovo Cimento C, 31, 357–370, 2008.; Pasini, A. and Pelino, V.: A unified view of Kolmogorov and Lorenz systems, Phys. Lett. A, 275, 435–446, 2000.; Pasini, A., Pelino, V., and Potestà, S.: Torsion and attractors in the Kolmogorov hydrodynamical system, Phys. Lett. A, 241, 77–83, 1998.; Pasini, A., Langone, R., Maimone, F., and Pelino, V.: Energy-based predictions in Lorenz system by a unified formalism and neural network modelling, Nonlin. Processes Geophys., 17, 809–815, doi:10.5194/npg-17-809-2010, 2010.; Pelino, V. and Maimone, F.: Energetics, skeletal dynamics, and long-term predictions on Kolmogorov-Lorenz systems, Phys. Rev. E, 76, 046214, doi:10.1103/PhysRevE.76.046214, 2007.; Pelino, V. and Pasini, A.: Dissipation in Lie-Poisson systems and the Lorenz-84 model, Phys. Lett. A, 291, 389–396, 2001.; Reick, C. H.: Linear response of the Lorenz system, Phys. Rev. E, 66, 036103,


Click To View

Additional Books

  • Topographic Instability of Flow in a Rot... (by )
  • A Model for Large-amplitude Internal Sol... (by )
  • Isotropy Restoration Toward High-beta Sp... (by )
  • Monitoring the Dynamic Behaviors of the ... (by )
  • Scaling Properties of Planetary Calderas... (by )
  • Diffusion-affected Passive Scalar Transp... (by )
  • Coupling Coefficients and Kinetic Equati... (by )
  • The L1/2 Law and Multifractal Topography... (by )
  • A Novel Iterative Approach for Mapping L... (by )
  • Optimal Solution Error Covariance in Hig... (by )
  • Geometric and Topological Approaches to ... (by )
  • Convex and Concave Types of Second Baroc... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library on the Kindle are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.