World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Does Chlorophyll A Provide the Best Index of Phytoplankton Biomass for Primary Productivity Studies? : Volume 4, Issue 2 (01/03/2007)

By Huot, Y.

Click here to view

Book Id: WPLBN0003977144
Format Type: PDF Article :
File Size: Pages 39
Reproduction Date: 2015

Title: Does Chlorophyll A Provide the Best Index of Phytoplankton Biomass for Primary Productivity Studies? : Volume 4, Issue 2 (01/03/2007)  
Author: Huot, Y.
Volume: Vol. 4, Issue 2
Language: English
Subject: Science, Biogeosciences, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Bruyant, F., Babin, M., Grob, C., Twardowski, M. S., Huot, Y., & Claustre, H. (2007). Does Chlorophyll A Provide the Best Index of Phytoplankton Biomass for Primary Productivity Studies? : Volume 4, Issue 2 (01/03/2007). Retrieved from

Description: CNRS, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France. Probably because it is a readily available ocean color product, almost all models of primary productivity use chlorophyll as their index of phytoplankton biomass. As other variables become more readily available, both from remote sensing and in situ autonomous platforms, we should ask if other indices of biomass might be preferable. Herein, we compare the accuracy of different proxies of phytoplankton biomass for estimating the maximum photosynthetic rate (Pmax) and the initial slope of the production versus irradiance (P vs. E) curve (α). The proxies compared are: the total chlorophyll a concentration (Tchla, the sum of chlorophyll a and divinyl chlorophyll), the phytoplankton absorption coefficient, the phytoplankton photosynthetic absorption coefficient, the active fluorescence in situ, the particulate scattering coefficient at 650 nm (bp (650)), and the particulate backscattering coefficient at 650 nm (bbp (650)). All of the data (about 170 P vs. E curves) were collected in the South Pacific Ocean. We find that when only the phytoplanktonic biomass proxies are available, bp (650) and Tchla are respectively the best estimators of Pmax and alpha. When additional variables are available, such as the depth of sampling, the irradiance at depth, or the temperature, Tchla becomes the best estimator of both Pmax and α. From a remote sensing perspective, error propagation analysis shows that, given the current algorithms errors for estimating bbp(650), Tchla remains the best estimator of Pmax.

Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?

Antoine, D., Morel, A., Gordon, H. R., Banzon, V. F., and Evans, R. H.: Bridging ocean color observations of the 1980s and 2000s in search of long-term trends, J. Geophys. Res., 110, C06009, doi:10.1029/2004JC002620, 2005.; Babin, M. and Morel, A.: An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters, Limnol. Oceanogr., 39, 694–702, 1994.; Babin, M., Morel, A., Claustre, H., Bricaud, A., Kolber, Z., and Falkowski, P. G.: Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems, Deep-Sea Res. Pt. I, 43, 1241–1272, 1996.; Behrenfeld, M. J. and Boss, E.; Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass, J. Mar. Res., 64, 431–451, 2006.; Behrenfeld, M. J. and Boss, E.: The Beam attenuation to chlorophyll ratio: An optical index of phytoplankton physiology in the surface ocean?, Deep Sea Res. part 1, 50, 1537–1549, 2003.; Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cycles, 19, GB1006, doi:1010.1029/2004GB002299, 2005.; Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr. 42, 1479–1491, 1997.; Behrenfeld, M. J., Maranon, E., D. A.,, and Hooker, S. B.: Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production, Mar. Ecol.-Prog. Ser. 228, 103–117, 2002.; Behrenfeld, M. J., Prasil, O., Babin, M., and Bruyant, F.: In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis, J. Phycol. 40, 4–25, 2004.; Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability of phytoplankton absorption in oceanic waters: influence of the size structure of algal populations, J. Geophys. Res., 109, C11010, doi:11010.11029/12004JC002419, 2004.; Claustre, H., Babin, M., Merien, D. Ras,, J., Prieur, L., Dallot, S., Prasil, O., Dousova, H., and Moutin, T.: Toward a taxon-specific parameterization of bio-optical models of primary production: A case study in the North Atlantic, J. Geophys. Res.-Oceans, 110, C07S12, doi:10.1029/2004JC002634, 2005.; Cullen, J. J.: The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a, Canadian Journal of Fisheries and Aquatic Sciences, 39, 791–803, 1982.; Doron, M., Babin, M., Mangin, A., and Hembise, O.: Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance, J. Geophys. Res., in press, 2007.; Falkowski, P. G. and Raven, J. A.: Aquatic Photosynthesis, Blackwell Science, Malden, 1997.; Gardner, W. D., Mishonov, A., and Richardson, M. J.: Global POC concentrations from in-situ and satellite data, Deep-Sea Res. Part Ii-Topical Studies Oceanogr., 53, 718–740, 2006.; Gordon, H. R. and McCluney, W. R.: Estimation of the depth of sunlight penetration in the sea for remote sensing, Appl. Opt., 14, 413–416, 1975.; Gregg, W. W. and Carder, K. L.: A simple spectral solar irradiance model for cloudless maritime atmosphere, Limnol. Oceanogr., 35, 1657–1675, 1990.; IOCCG: Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and aplications. Pp. 126 in V. Stuart, ed. Reports of the internation ocean-colour coordinating group. IOCCG, Dartmouth, 2006.; Jeffrey, S. W. and Humphrey, G. F.: New spectrophotometric equation for determining chlorophyll a, b c1 and c2, Biochem. Physiol. Pflanz., 167, 194–204, 1975.; Kitchen, J. C. and Zaneveld, J. R.: A three layer sphere model of the optical properties of phytoplankton, Limnol. Oceanogr., 37, 1680–1690, 1992.; Lee, Z. P., Carder, K. L., Marra, J., Steward, R.


Click To View

Additional Books

  • The Response of the Terrestrial Biospher... (by )
  • Inverse Estimation of Source Parameters ... (by )
  • Fossil Invertebrates Records in Cave Sed... (by )
  • Upscaling of Gross Ecosystem Production ... (by )
  • Technical Note: on the Determination of ... (by )
  • Intact Polar Lipids of Thaumarchaeota an... (by )
  • Temporal Variability in Bioassays of Amm... (by )
  • Pure Stands of Temperate Forest Tree Spe... (by )
  • The Effects of Management on Ammonia Flu... (by )
  • Dissolved Methane During Hypoxic Events ... (by )
  • Impacts of Dust Deposition on Dissolved ... (by )
  • Co2 Increases 14C-primary Production in ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library on the Kindle are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.